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In this paper we consider the two-dimensional scalar scattering problem for
Helmholtz’s equation exterior to a smooth open arc of general shape. The problem
has a number of physical applications including the diffraction of sound by a rigid
barrier immersed in a compressible fluid and by a crack in an elastic solid which
supports a state of anti-plane strain (SH-motion). The mathematical method used
here is the crack Green function method introduced by G. R. Wickham. This enables
the scattering problem to be reduced to the solution of a Fredholm integral equation

2 of the second kind with a continuous kernel. The numerical solution of this equation
> E is discussed and a number of examples are computed.

o)

=

43N @) 1. Introduction

Eg The diffraction of waves by a thin planar strip in two dimensions has probably

received more attention than any other classical scattering problem for the scalar
Helmholtz equation. There are a number of reasons for this, both physical and
mathematical. From the former point of view, it occurs in various branches of
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504 P. A. Lewis and G. R. Wickham

classical physics, particularly in acoustics, electromagnetic theory and elasto-
dynamics, while in the context of mathematical methods, it provides an ideal
benchmark problem for testing new analytical and numerical techniques. The
important physical characteristic of the problem is that it is the simplest finite
geometry which gives rise to multiple edge diffraction. This in turn has mathematical
implications in that the edges of the strip are singular points of the solution of the
scattering boundary-value problem. It follows that, if the problem is to be solved
numerically at some stage, then the numerical method should be designed
accordingly.

Our interest in the corresponding problem when the strip is non-planar arises in the
context of linear elastodynamics. The exterior Neumann boundary-value problem
models the scattering of SH-waves in anti-plane strain by a strip-like crack in a
homogeneous isotropic elastic solid. In itself this problem is of little physical interest
but it may be regarded as a prototype of the important case of plane strain where the
wave motion consists of longitudinal (P-waves) and vertically polarized shear waves
(SV-waves), coupled at the crack faces. The mathematical theory that we shall
present here is easily generalized to the latter case and will be the subject of a
following paper (Lewis 1992). The main justification for the present work, quite apart
from the fact that our solution is new, is to present a mathematical method in an
environment uncluttered by algebraic complexity. Our aim is to improve on methods
for quantifying the diffraction of elastic waves by cracks, a subject which could be
said to have played a pivotal role in the understanding of the reliability of ultrasonic
methods for detecting metallurgical defects in crucial components of plant
and machinery. However, it should not escape the reader’s attention that what we
have to say here will be of use in various other branches of continuum mechanics.

Most of the mathematical methods used for the planar case are, in some sense,
special. For example, it is possible to regard the strip as the limiting case of an ellipse
with unit eccentricity. The wave equation is separable in elliptic coordinates and so
it is possible to obtain an explicit infinite series solution (Harumi 1961). Similarly,
the scattering problem may be formulated as a mixed boundary value problem for
a semi-space in a way which is suitable for the application of Fourier transform
techniques (Ang & Knopoff 1964 a, b; Sih & Loeber 1968, 1969 ; Mal 1970). The latter
are just a few examples where elastodynamics has provided the motivation.
Generally, they are formulations that provide an exact analytical approach to low-
frequency asymptotic expansions and also yield Fredholm integral equations which
are easy to solve when the wavelength of the incident waves is comparable with the
dimensions of the crack. For high frequencies Keogh (1985a, b) has provided an
exact convergent series for diffraction by a planar strip-like crack which has the
powerful feature that it provides a rigorous asymptotic expansion for the diffracted
field to any desired order of approximation. Keogh used the Wiener—Hopf technique
and thereby generalized to the elastic case the scalar solutions obtained by a number
of other authors (see, for example, Karp & Russek 1956; Wolfe 1972).

Methods which exploit the fact that the crack faces are flat are not easily
generalized to arbitrary non-planar geometries. In this case it is natural to use a
Green function to derive an integral equation on the scattering surface. This in turn
may be treated using a suitable numerical scheme such as the boundary element
method. In the applications to scattering by a crack, it may be shown that, in
general, the solution may be determined in terms of the crack opening displacement
(cop). Thus, for example, the problem may be formulated in terms of a certain

Phil. Trans. R. Soc. Lond. A (1992)
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The diffraction of SH waves 505

integro-differential operator equation with the cop as the unknown function. A
particular feature of this type of equation is that it is hyper-singular (Martin & Rizzo
1989). One way over the inevitable numerical difficulties with such an equation is to
regularize the operator by performing an integration by parts. This essentially
reformulates the equation in terms of a new unknown function which is a tangential
derivative of the cop. The latter may be interpreted physically in terms of an
equivalent dislocation density for the crack. There are a number of numerical
approaches to the regularized equation. In particular, Tan (1977) used a Fourier
expansion for the unknown dislocation densities but this failed to take proper
account of the singularities at the edge of the crack. In contrast, the method first
proposed by Erdogan & Gupta (1972) takes explicit account of these singularities.
This has proved to be a highly successful approach to solving the hyper-singular
equation for flat cracks (see, for example, Brind & Achenbach 1981). Slightly
different, but related methods were given by van den Berg (1982) and Takakuda
(1983) who also confined their attention to the planar case.

Martin & Rizzo (1989) proposed a direct boundary element attack on the hyper-
singular equation. They argued that ‘the strategy of regularisation’ is ‘...a
burdensome and conservative posture’. Their approach is to introduce boundary
elements that allow the evaluation of the hyper-singular operator interpreted as a
Hadamard finite part. Thus, in particular, such a scheme must take explicit account
of the singularities in the cop and the finite elements must be chosen to aid the
calculation of the finite part integrals. This of course is itself an implicit
regularization. Thus we are presented with yet another example of a commonly
experienced heuristic principle which may be termed ‘the principle of conservation
of mathematical difficulty’! If there is a point of contention, then it may be
encapsulated in the question: Is it preferable to perform an analytical or a numerical
regularization of the governing equations ? We take an opposite stance to Martin &
Rizzo, namely that, in general, it is better to prepare the conditioning of the equation
to be solved by analytical rather than numerical methods. Indeed Wickham (1981)
argued that the real cause of the difficulty in solving this type of problem is that the
free space Green function is an inappropriate fundamental solution for building a
representation of the scattered field. He showed that for the planar crack it was
possible to construct a crack Green function (ceF) which is discontinuous across the
crack surface and when allied with the scattered field in Green’s theorem yields a
Fredholm integral equation of the second kind for the cop. This integral equation has
the endearing feature that the singularities in the cop are explicitly displayed and the
kernel is completely continuous. Further, this simple structure has an obvious pay-
off in the construction of a numerical scheme; the numerical solution of Fredholm
second kind equations is extremely well understood and documented. Indeed, there
are numerous successful schemes to choose from (Baker 1977). Of course, by the
principle already enunciated, there must be a price to pay in Wickham’s approach.
In fact, it turns out that all the numerical difficulty in the problem has been
transferred into the evaluation of the kernel. The latter is represented by a weakly
singular integral operator acting on a known continuous function. Wickham (1982)
argued that the cost may simply be met by a suitable product integration scheme.
Further, given that the kernel is explicitly known, it is relatively straight forward
to control the accuracy of the computation.

In this paper we demonstrate that the car method has analytical and numerical
advantages over other regularization techniques. It focuses attention on the ‘real’

Phil. Trans. R. Soc. Lond. A (1992)
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506 P. A. Lewis and Q. R. Wickham

unknown cob rather than the more singular dislocation density and the essential
structure of the solution is explicitly displayed in the Fredholm second kind
equation. The latter affords a flexible numerical approach in which the errors may be
rigorously controlled. Above all, the cF method provides a very simple extension to
non-planar geometries without resorting to the direct numerical treatment of the
hyper-singular equation. In §2 we formulate the exterior Neumann scattering
problem for a finite open arc and prove that under certain edge and radiation
conditions it has a unique solution. In §3 we explore the classical double layer solution
for the scattered field as an integral over the arc of the cop times a dipole
corresponding to the free space Green function and in §4 we introduce the car that
enable the determination of this dipole distribution as the solution of a Fredholm
integral equation of the second kind. The remainder of the paper is devoted to the
numerical treatment of a number of simple examples; we reproduce some of the
known results for the planar case and some new results for a variety of non-planar
geometries. In a subsequent paper (Lewis 1992) a generalization of the present theory
to the full equations of elasticity in two dimensions will be given.

2. Formulation of the scattering problem

Let L be a simple open and bounded arc in an infinite plane —oo <z < o0,
— o0 <y < o0, where (x,y) are cartesian coordinates relative to a fixed origin O,
and let D, be the domain exterior to L. Suppose that the points on L may be
parametrized according to

x=f(s), y=g(s),

where s is arc length measured from one of the ends and assume that f and g have
continuous second derivatives. We shall label the two sides of the arc by L, and L_,
where L, is the left-hand side as one moves in the direction of increasing arc length,
and the two ends of L shall be denoted by E*, where £+ and £~ correspond to s = + s,
respectively (see figure 1). The unit normal to L, pointing into the domain D, will
be denoted by +n(s) and if P,@), ..., denote points in D, U L, then our scattering
problem may be stated as follows.

Problem 1. Scattering problem S(¢,). Determine a function ¢(P) such that
¢(P)e C*D,) and whose first-order derivatives are continuous from L, and which
satisfies the Helmholtz equation:

0 0
(@+537+k2)¢(l’) =0, PeD,, (2.1)

where k is a non-zero complex constant such that 0 < arg (k) < 3m; the boundary
condition

) 0
%(PH——&%}(P) =0, PelL,, (2.2)

where ¢,(P) is any solution of (2.1) such that 9¢,/0n is Holder continuous on L ; the
‘edge condition’, namely there exists M > 0 such that

|p(P) <M, PeD,; (2.3)
Phil. Trans. R. Soc. Lond. A (1992)
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The diffraction of SH waves 507

Figure 1. Configuration of the scattering problem.
and the radiation condition
1#(0¢p Jor —ikep) -0, (2.4)
as r — 00, uniformly in the angle 6, where (r, 6) are plane polar coordinates defined by
x=rcosf, y=rsinf, 0<6<2m. (2.5)

(Wilcox (1959) has shown that (2.4) is equivalent to the usual Sommerfeld
conditions.)

Theorem 1. The only solution of &(0) is identically zero.

The proof of this result is given in Appendix A. In the remainder of this paper we
shall construct the exact solution of ¥ (¢,) and compute it in some special cases.

3. The double layer solution

We shall seek a solution of the scattering problem in the form of the double layer
potential ‘
2

o PeD,, (3.1)

P(P) = Lﬂ(sq) G(P,q)ds

qQ’°

where, here, lower case letters shall (ienote points on L,
G(P,Q) = {HP (klr(P)—r(Q)]) (3.2)

and r(P) denotes the position vector of P relative to O. We shall assume that the
density function u(q) satisfies

Properties P (L)
WET) =0, wE)=0,

du/ds, exists and is Holder continuous on L.

In Appendix B we prove the following.
Phil. Trans. R. Soc. Lond. A (1992)
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508 P. A. Lewis and G. R. Wickham

Theorem 2. The integral representation (3.1) solves the scattering problem & (¢,)
provided we can determine a function pu(s,)€ P (L) such that

_% _ 0 o s
anp_aan (sq)anq(p,q)dsq, pel®*. (3.3)

Equation (3.3) is a formal statement of the boundary conditions (2.2) and is the
hyper-singular equation discussed by Martin & Rizzo (1989).

4. Green functions in D,

We now introduce a class of Green functions in the plane cut along L. First, we
define G(P, q) by

o oG
G(P,q) =f p(t, Q)a (t,P)ds,, PeD,, (4.1)
L
where

pt.q) = —(2/m){In|s,—s | —In|sg—s,8,— /(55— s}) vV (s5—sp)l +Inlsel},  (4.2)

where the square roots in this expression are taken to be positive. Now, it is clear that
ixP = (z,y), then

2 62
(aaz+~—+k2) (P,q) =0, PeD,

and @ satisfies the radiation condition (2.4). Further, we may express G in the form

AP o) — L[ plt.q)
A(P,q) = Re [sz (i—2) dt]+G P, q),

where z = x+iy and

A oG,
Gy(P,q) =f pltq) 7~ o, H(t, P)ds, (4.3)

is continuous in the whole plane D, U L. Thus, provided p # ¢

[G(p.q)] =G (p.q)—C_(p.q) =p(p.q), qeL. (4.4)

We conclude that G(p, g) is a single valued outgoing solution oxHelmholtz’s equation
in the plane cut along L and has an isolated singularity at P = ¢. In Appendix C we
prove the following.

Theorem 3. (a) Let z = q+Re'®, then as z—>q from the + or — sides of L,
ST 1o1). (4.5)

b) If t—p = R(t, p) e®“ P then

oG/on, = K(p,q), pel, geL, p+#q, (4.6)
Phil. Trans. R. Soc. Lond. A (1992)
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The diffraction of SH waves 509
where K(p.q) = Ky(p.q)+ f pt,q) My (t, p) ds,, (4.7)
L
5 1 9 00

Ky(p.q) = %%J‘LP(MH@_&(%PM% (4.8)

_1 o sin a(t, p)
=5 on, Lp(t, q) R, p) ds,, 4.9)

%4,

M, (t,p) = on, om, (t, p), (4.10)

and ]f'(p,q)—]fo(p, q) is continuous for all p,q on L and Ky(p,q) = O(In|p—q|).

This result shows that G(P, ¢) has equal and opposite source singularities at P = ¢*
and P =q¢~ and has a continuous normal derivative on L except possibly at g.
Accordingly we shall call any function with these properties a ‘Green function for
(2.1) in the cut plane D, . It is clear that there are infinitely many Green functions
in D, for suppose o(t, q) is any function defined on L x L such that

a(t,q) e Z(L) x Z,(L),

i.e. for each g, o has properties Z,(L) and for each ¢, o has properties Z,(L), then the
function @, defined by
’ G
GO’(Pa Q) = f O'(t,q)a—(t,P)dSt (411)
L on,
is, by Theorem 3, an outgoing solution of the wave equation satisfying (2.3) and
having a continuous normal derivative on L. The latter statement holds for each
value of ge L and hence R
G*(P,q) = G(P,q)+G,(P,q) (4.12)
is a Green function in D,. To this extent we may regard G(P, ¢) as the ‘fundamental
Green function’ for equation (2.1) in D,. In the following section we shall show that
the exact solution of the scattering problem #(¢,) may be calculated in terms of any
function of the form (4.12).

5. Existence theory

We shall now apply Green’s theorem to the functions G(P,q) and ¢(P) in the
domain &, described in figure 1 excluding small semi-circular areas around P = ¢*

and P=q;ie.
f ( %G ;%)dsp =0. (5.1)
¢\ On, on,

Assuming for the present that the contribution from %, vanishes in the limit ¢ >0 and
using theorem 3 and (2.2) we find that as § >0 and R oo

) 0
/A(q)—LK(p,q)ﬂ(p)dsp = Lp(t,q)a%fdst, (5.2)
where wlq) =[9(@)], qel.

Phil. Trans. R. Soc. Lond. A (1992)
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510 P. A. Lewis and G. R. Wickham
Similarly, the same process applied to G (P, q) and ¢(P) gives
%,
K p q dS = O'(t,‘]) d8t> QGL, (53)
on,
which when added to (5.2) gives
K* p)ds, = -%d L 5.4
(p,q) p(p)dsy P a5, ds, qel, (5.4)
t
where KX(p,q) = K(p, 9)+K,(p,q) (5.5)
and p*(t.q) = plt,q)+o(t,q). (5.6)

Thus, assuming a solution &(¢,) exists such that

limf .=0
e~>0 JE

€

n (5.1), then the potential difference [@] across L satisfies any one of the integral
equations (5.4). Each of these equations is equivalent to the fundamental equation
(5.2) in the sense that any solution of one is also a solution of (5.4) and vice versa.
Further if 0¢,/0n, is sufficiently smooth the right-hand sides of (5.4) and (5.2) are
continuous and, since the kernels K and K* have at worst a logarithmic s1ngular1ty
at p = ¢, then the Fredholm alternatives (Smithies 1962) apply. The main result of
this section is the following.

Theorem 4. There exists one and only one solution of the scattering problem & (¢,)
given by (3.1), where u(q) is the unique solution of any one of the integral equations (5.4).

The details of this proof are given in Appendix D. Thus we may compute [@] by
solving any of the integral equations (5.4). In the following sections we shall exploit
this property to solve the scattering problem for a number of special cases.

6. Some examples; the straight line and the circular arc

For this, and the remaining sections, we introduce rectangular cartesian
coordinates (x,y), such that the origin of the coordinate system is located at the
midpoint of the straight line segment joining the endpoints, £~ and E*, of the
scatterer, and £~ and E* lie on the x axis. Thus £~ and E* are located at (+a,0)
say. It is convenient to introduce the dimensionless parameter N = ka and
non-dimensionalize all the lengths in the problem, so that £~ and E* correspond
to (£1,0). Next we specialize the general integral equation (5.4) to two particular
geometries.

(@) The straight line segment

The simplest case is when the scatterer is a straight line segment. Evidently (4.9)
and (C 14) give )
Ko(p,q) =0, (6.1)

since f(t) = O(t, p) Vpe L. Equation (5.2) therefore becomes

ﬂ(xq)—J—lﬂ( )}2 (xp9xq) d.’I) = J_ p(xbxq)'a(r;%(xt’o) dxt’ (62)

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. Circular scatterer geometry.

1
where K, (x z,) =j p(x,, x,) M, (%, x,) dz,
-1

p?
. ! H® Nz, —x,|) 2i
= 1 2 1 ¢ p
1N f_lp(xt,xq){ N, —a,) +nN2(xt—xp)2}dx‘ (6.3)

and plx, x,) = —(2/m) [Info,— x| —In[1—z,2,++/ (1 —2f) v/ (1 —23)l]. (6.4)

It follows from (6.3) that Kl(xp,xq) is uniformly O(N%InN) and is a continuous
kernel. Thus the integral operator is compact and small in the limit N—0 and (6.2)
may be written in the form

piz,) = ﬂo<xq)+f_ () Ry (2,2,) 2, (6.5)

It follows that (6.5) may be solved by iteration, the solution being expressed as a
Liouville-Neumann series. In the case when the incident field is

P = e, (6.6)
we find that, to leading order,
wx,) = —2iN+/(1—=a2)+ N3{gm+/ (1 —a3) [3+ (i/m) {y — 3+ In GN)}]
+i[3(1—=x )2+2x V(1=22)}+0W°InN). (6.7)
This result is a useful asymptotic limit against which the numerical methods
described later may be compared.

(b) The circular arc

Consider a scatterer in the form of an arc of a circle of radius e and centre O’ and
which subtends an angle 2y at O, see figure 2. By using equations (4.9) and (C 14)
we have

sin a(t, p)
sina(t,p) 1
Bus, R(i,p) 2a
Phil. Trans. R. Soc. Lond. A (1992)
20 Vol. 340. A
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Yy
n
-1 \/ M X
y=f(x)

Figure 3. Geometry of the general profile.

and so K,(p,q) = 0, as in the previous example. We next determine M, (¢, p) in terms
of the polar coordinates (r, ) relative to the origin O’. It can be easily shown that

M,(0,,0,) = {iN® [%—%7}2H31)(N7))+%} (6.8)

where N = ka and v =2sing|0,—0,. (6.9)
Finally, for this example, p(6,,0,) is given by

PO, 0p) = —(2/m) [In|0, =0, =Inlyg—0,0,—+/(vs—05) vV (vo— O})| +Inly l]. (6.10)

Again we see that the operator is small in the limit N0 and so the low-frequency
asymptotics may be obtained in a relatively straightforward manner. Cole (1977)
obtained a similar integral equation by a conformal mapping technique. He showed
that [@] satisfies (5.4) with

p¥(60,,6,) = — (2/m) [In]sindy cos by sin (0, — 0,
—In|sin®}y cos §(6,—0,) —sin 36, sin 30,4+ 8(6,) S(0,)l], (6.11)
where S(0) = 4/ (sin? Ly —sin®10). (6.12)

The theory in §5 shows that our equation and Cole’s are in fact equivalent. Cole gives
several terms in the low frequency expansion.

7. Scattering by arcs of general shape

In the previous section we considered the only two cases for which K (p,q) = 0.
Here we will consider the case of an arc given by y = f(z), where f is a twice
continuously differentiable function with a single-valued inverse f7!, see figure 3.

(@) Simplification of the kernel
From (4.1) and (4.6) the expression for the kernel in our Fredholm integral
equation is

oG

R(p.) = 5 | pHe050 0.)ds, (1.1)

pJL
and it is a relatively simple matter to show that

Y

. 0 oG
K(P,Q) =5 P*(t,Q)_(taP) d8t+N2 p*(t7 Q) n,n G(t?,/p) dst‘ (72)
08, )1 0s, L

Performing an integration by parts, we obtain

0 op*
R(p.q) =7, f - (t,q)(}(t,p)dsﬁNZJ Pt ny m G p)ds,  (7.3)
pPJL t

L
Phil. Trans. R. Soc. Lond. A (1992)
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where the first integral must be interpreted as a Cauchy principle value. If p # ¢, the
order of integration and differentiation may be interchanged so that

R oG 0
K(p,q) =f 5;—(t,p) a/; (t,q) dst+N2f n, n,p*(t,q)G(t,p)ds, (7.4)
L

» L

and the Cauchy Principle Value is taken at t = p and ¢t = q.
For an arbitrary surface, the derivatives may be written as

2 g o 0
o VA (@R {ayff (x‘)"@?t}' (7:9)

Further, we may transform the surface integrals in (7.4) into integrals along the
‘mean plane’, i.e. y = 0, |2| < 1. This is simply achieved by writing

ds, = v/ (1+f'(2,)?) da,.

Expanding the derivatives in (7.4) we obtain the following expression for the kernel :

e[ Lf’iap
K(x,,x,) = —3N fﬂ\/ (1+/ (x,)?) 0s (t q) I (x,, x,) du,

1
+iiN2J p*(¢, Q)Fz(xp, z,)dz,, (7.6)
-1

where
f () (f(2,)—f (2, >]
F -
1(%5, 21) [vac +(f )~ @)
xH“’(NV[(x —a )+ (@) —f @) (1.7)
and me—w DN [y =2+ (@) —f @)D, (18)

V{l+f (@

(b) Choice for p*(t,q)
From §4, we have seen that we may choose p*(¢,¢) to be
p¥(tq) = —(2/m){In s, —s,| —Inlsg —s, 8, + /(85— s5) V(5 —sD)| +In [s[} + o (£, q).

Here we exploit the arbitrariness of o°(¢, ¢) to obtain the simplest form for the integral
equation. In order to motivate our choice, we examine the behaviour of the
integrands in (7.6). From (7.7) and (7.8) we can see that

F(x, xt) = —(2i/nN*(x,—x,))+0(1), x,->2,
and Fy(xp, ;) = (2i/m) v/ (1 +f"(2,)%) In |z, — 2|+ O(1),

which are independent of f (z,), i.e. they are largely insensitive, to this order, to the
geometry of the scatterer. It therefore seems reasonable to choose (¢, ¢q) such that

PHt.9) = pla,, z,). (7.9)
The simplicity of this solution is exemplified by the identity

op* p (

\/(1+.f’(%t)2)a—8t(tﬂ) =,

%y, Z,),

Phil. Trans. R. Soc. Lond. A (1992)
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514 P. A. Lewis and G. R. Wickham

which, in particular, means that we may integrate the logarithmic singularities in
(7.7), and p(x;,x,) is independent of the form of the surface. This is clearly a
computationally more convenient form than the fundamental ccr, given by (4.2) for
this special class of scatterers.

We note that the most singular term in (7.6) gives zero contribution, since, by
contour integration,

1 1 0 . o [ dz,
f—l (xp_xt)é?t(xt’xq)dxt = V(1) }—1 V(1—af) (X, — ) (2, — )

=0, (7.10)

and so, after an integration by parts, the final form of the kernel is

iNZ 1 B
K(x,,x,) = WJ P(xtaxq){a(x:,xp)HBD(N V(2% +5%))
P » -1
HO N/ (22 + %) 2
—bl@n ) N/ (2% +s?) nN2(xt—xp)2}dxt’ .1
where
a(@y, x,) = (@) f(@y) + 1= (@ +f"(x,) 8) (@ +f"(x,) s )8)/ (x®+ %), } (7.12)
b(x, x,) = f/(x,) f'(x,)+1—2 x+f p)8) (@ +f'(x,) )/ (2% +57),

and x = x,—x, and s = f(x,)—f(x;). Thus we have arrived at a remarkably simple
expression for the kernel of our 1ntegral equation for the class of scattering surfaces
defined above.

Finally in this section, we consider the behaviour of the crack opening displacement
(cop). From (5.4) we can see that

0 -
o) = f plt,4) 220 ds,+ f R(p,q)p(p)ds,. (7.13)

Also, using (7.11) and the special form chosen for p(t, ¢), we can deduce that the cop
has the following behaviour at the endpoints

wq) = O((1+q)), ¢—->7F1, (7.14)

which conforms with the edge condition (2.3) and the ubiquitous stress singularity at
the edge of a crack.

8. Numerical analysis and results
The form of the kernel (7.11) is

K(x,.x,) = f P, 0) Py, ) da, (8.1)

where F(x,,x,) is a linear combination of the Hankel functions H{"(Nz) and H{(Nz),
where z = /[ (2, —x,)*+ (f(x;) —f(2,))?]. This integral cannot be performed explicitly
and so it is necessary to devise a scheme for evaluating it efficiently. From (7.11)
F(x,,x,) may be written as
F(x,,x,) = A(xy) In o, —x |+ B(x,) (2, —x,) In|x,—x,)
+O(x,) (v,—x,)% In |, — x| + Fy(x,, x,), (8.2)
Phil. Trans. R. Soc. Lond. A (1992)
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where Fi(z,, ) is a twice continuously differentiable function and 4(x,), B(x,) and

C(x,) are given by

Axy) = (i/m) (L+f"(x,)),
B(xy) = (i/m)f (2,) " (@),
Olwy) = — (IN?/81) (1+f"(@,)") + (i/21) f/(2,) f " (2,).

It is to be noted that the expression for C(x,) contains the third derivative of the
surface profile. This extra term arises from the method of solution i.e. the expansion
of the kernel into a Taylor series. The theory presented in §2 through §7 only requires
that the scattering profile be twice continuously differentiable.

In Appendix E we show that the integrals which multiply 4(x,), B(x,) and C(z,)
may be performed explicitly ; thus we have

»)

Kz, x,) = 2A(xp){2|xp—xq| arctan A/(1 i96‘1)—(1 +1n2) \/(l—xg)}

lixq

1+x
+B(x,) { —2(x,—x,) v, —2x,|arctan A/(1 = xZ)

—3lx,+22,In2—4x,1n 2] \/(l—xg)}

+C(x,) {%(xp—xqf |z, —x,| arctan A/(—i%) +4/(1 —xz)
q

X[} —2a5In 2+ 22, 2, In 2 —F27[1+ 3 In 2]+ {1 — 6 In 2]]}
1

+f Fy(x,, ) p(xy, 2,) d,, (8.3)
-1

where + corresponds to x, > x, and x,, < x, respectively. It now remains to find a
method for efficiently evaluating the remaining integral.

The obvious numerical scheme for the last term in (8.3) is a product rule, in which
case we need to choose an appropriate set of basis functions for approximating F,
regarded as a function of z,, for each value of z,. Since we have chosen F, to be C?
then a number of alternatives present themselves. The most natural approach is to

use Chebyshev polynomials because

Un(xq)_ Un—z(xq)
n+1 n—1

f Py, ) T, () Ao, = \/(1—%2)[ ] n>1, (8.4)

which is easily established using the result (22.13.4) in Abramowitz & Stegun (1968).

Here the functions 7}, (x), U,(x) are the Chebyshev polynomials of the first and second
kind. This leads to the approximation

1
[ e Bz ao = v (1= oy +ageer,)
-1

+ 3 eyfa,)| 2Tl g

n=2 n+1 n—1

and effectively reduces the integration to the determination of the Chebyshev
coefficients ¢, (x,). This scheme is fast and has the added advantage that 1/(1—22)

Phil. Trans. R. Soc. Lond. A (1992)
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displacement along scatterer displacement along scatterer

Figure 4. Stability of the results obtained for the cop for N = 10.

is an explicit factor. This in turn enables us to explicitly display the singular
behaviour of u(x,) in the integral equation (7.13). Thus we write

wx) =/ (1—a®)u(x), say, (8.6)
so that u(x,) satisfies

1
v<1—x3)u(xq)—f V(=) u(@,) v (L (2,)°) K (@, 20 d, = polz,). (8.7)

We further note that

1 1+
lim —————arctan = q)zl 8.8
W V=) A/(1+xq : (5:5)

and so we can see that our kernel (8.3) is continuous on (z,,z,)e[—1,1]x[—1,1].
This important result means that we have a large degree of flexibility in choosing a
numerical scheme for the solution of (8.7), cf. Baker (1977). The only remaining
difficulty is that K(x,,z,) has a discontinuity in its first derivative on the diagonal
x, = x,, but this may easily be accommodated in our choice of quadrature rule. Here
we have chosen to adopt what is probably the simplest and fastest numerical method
for solving (8.7), namely the Fox—Goodwin algorithm (Fox & Goodwin 1953). This
uses the trapezium rule and an iterative refinement by the Gregory correction
formula; in our case this has to be applied on the piecewise continuous parts of the
range of integration.

Finally, we note that unlike boundary element methods of solution the shape of
the boundary may be included ‘exactly’ and so the only sources of numerical
truncation error in our method are in the approximation (8.5) and in our solution
scheme for (8.7). It is well known that for Fredholm integral equations of the second
kind with compact operators it is relatively easy to control the latter (cf. Baker 1977,
ch. 4).

The first set of results that we present are those for the scattering surface y =
sinmx. Figure 4a, b illustrates the stability of the results obtained for the con. Here
we have used 21, 41, 81, 161 and 321 points in the Fox—Goodwin algorithm, with NV,

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY A

PHILOSOPHICAL
TRANSACTIONS
OF

A

THE ROYAL A
SOCIETY /1

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The diffraction of SH waves 517
(@) (b) © (d)
2 2 2 2
1 1 1 1
/\/\f VN F——  p \odnenn
-1 0 1 -1 0 1 -1 0 1 -1 0 1

Figure 5. Tllustration of the variation of the cop with wavenumber. () N = 1; () N = 4;
() N=17; (d) N=10.

31(a) 316

w
—~
ey

w

(d)

=3 -3 -3 -3
Figure 6. Polar plot of the scattered fields associated with figure 5. () N=1; (b)) N = 4,
() N=17; (d) N = 10.

2.8

scattering cross-section

0 5 10
N

Figure 7. Scattering cross-sections.

the non-dimensional wavenumber, equal to 10. An enlargement of a small portion of
figure 4a is shown in figure 4b. We can clearly see that the results are converging
quite rapidly, even for large values of N.

Figure 5 shows examples of the cop as the wavenumber varies. In particular, we
have chosen N =1, 4, 7 and 10. Figure 6 shows a polar plot of the scattered fields
associated with each wavenumber.

Finally for our ‘benchmark’ scatterer, we present the results obtained for the
scattering cross-section, defined as the scattered field in the forward direction. For an
incident plane wave of the form

¢, = exp [iN(xsina+y cosa)],
the scattering cross-section is found by substituting 6 = lnr—a into (B 2). For
Phil. Trans. R. Soc. Lond. A (1992)
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15 IN=1

1.0

0.5

0
displacement along scatterer

Figure 8. Variation of the cop with wavenumber for a flat scatterer.

0.6

-08 —04 0 04 0.8
displacement along scatterer
Figure 9. Variation of the cop with angle of incidence for a semi-circular arc (N = 3).

comparison, we have plotted the results obtained when the scatterer is flat and when
we have a semi-circular arc of the form

y=v(a*=a?),
where a = 1.1. We note that we are unable to choose a = 1.0, since the theory
presented in this section requires a 1:1 correspondence between the scattering
surface and the plane y = 0.

Having presented various results for one specific surface, we next examine the
cops obtained from other scattering profiles. Figure 8 shows the results obtained
when the scattering surface is flat. These are in excellent agreement with those
presented by Mal (1970). Figure 9 shows the variation in the cop as the angle of
incidence varies for the semi-circular arc with N = 3. Figure 10a, b illustrate the cops
obtained from surfaces of the form

y = sin (mnx)/10, n=1,...,4,
for incident wavenumbers of N = 3 and 6.

Phil. Trans. R. Soc. Lond. A (1992)
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-08 —-04 0 04
displacement along scatterer

0.6 )

-08 —04 0 04 0.8
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Tigure 10. Examples of the cop for sinusoidal surfaces. (a) N = 3; (b) N = 6.
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displacement along scatterer

Figure 11. Comparison of low frequency asymptotic (-—--) results with

numerical (cooo) results.

Finally we compare the results obtained using our numerical scheme with the low
frequency asymptotic result of §6a. Results are presented for N = 0.2 and N = 0.5.
As can be seen in figure 11, there is good agreement, as would be expected.

9. Conclusion

In this paper we have developed an exact rigorous theory for determining the
potential discontinuity across an arbitrary finite open ‘rigid’ arc irradiated by scalar
waves satisfying Helmholtz’s equation. The problem has been reduced to a certain
Fredholm integral equation of the second kind with a continuous kernel. In the case
when the arc is twice differentiable and there exists a 1:1 mapping from the arc to a
straight line segment, we have provided a fast and accurate numerical scheme for

Phil. Trans. R. Soc. Lond. A (1992)
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solving this integral equation. Our method is rigorous in that we have proved the
existence and uniqueness of the solution of the original boundary value problem and
exact by virtue of the fact that we can, in principle, evaluate the solution to any
required accuracy. In addition the method used here has the following practical
advantages.

1. In principle, there are no restrictions on the size of the wavenumber N or the
‘surface heights and gradients’, f(x), f'(x).

2. The method explicitly displays the known singularity in the potential
discontinuity u(x); other methods, such as the boundary element technique for the
hypersingular equation, require the use of special elements to correctly model this
singular behaviour.

3. There is an abundance of simple numerical schemes for solving Fredholm
integral equations of the second kind. At low to moderate frequencies (N = O(1)) our
equation is as good numerically as an explicit formula for u(x).

4. The second kind integral (7.13) equation provides a rigorous interpolation
formula. Thus it is possible to calculate the u(x) at any point irrespective of the
solution method. This of course provides stark contrast with numerical methods
based on the solution of a first kind equation such as (3.3).

The general approach to the scattering by open surfaces and arcs by using the
discontinuous Green functions (ceF) has a number of important applications in
classical physics. In a future article it will be shown how to generalize the theory
provided here to the problem of scattering of elastic waves by an arbitrary shaped
crack in two dimensions. In a further paper we shall show how the discontinuous
Green functions may be used to solve the corresponding problems for piecewise
continuous arcs and arcs on which impedance boundary conditions are applied.

Appendix A. Proof of Theorem 1

Let Z, denote the domain interior to the circle » = R, denoted by %5, and excluding
the points on L and the domain ¥, interior to the circles %, of radius € centred at £~
and E* (see figure 1). Then it follows from the divergence theorem that

J lgrad ¢2dS = Re(/?z)f |¢|2dS+ReJ qﬁa—ads (A1)
2, a2, ¢ on

and Im (IEQ)JV |2 dS+ Ier ¢a—¢ds =0, (A 2)
a, v on

where € = 6, U L, U L_ U %, is the positively oriented boundary contour of &, ¢ e
C*(Z,) and grad ¢ is continuous from €. Suppose now that ¢ is any solution of &(0)
and define f(e) by

Sfle) = f lgrad </)|2dS——Re(lZZ)f |¢|2dS—Ref </)a—ggds, (A 3)
2, ) r on

VY
then ’ fe) = —f lgrad ¢|® ds, (A 4)
%C

i.e. f(e) is monotone non-increasing as e increases. Combining (A 3) and (A 1) gives
Phil. Trans. R. Soc. Lond. A (1992)
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f(e)=—Re(lEz)J [¢[2dS+Ref ¢a—$ds (A 5)
g, @, on

2 i
ds}

1
2
>

and hence using (2.3) and Schwartz’s inequality we obtain

o¢
on

e < re @izmear+{ [ gras){ |
%, %,

< Re (8 2netar+ 201y (ne) | [ feraa gt
€.

ie. Lf(e)l < b(w?) € +c v/ (—ef(€)), (A 6)

say, where b and ¢ are positive and independent of ¢. Now Knowles & Pucik (1973)
have shown that the differential inequality (A 6) implies that f(0*) = 0 and hence it
follows from (A 5) that

. o0 .
hmReJ%gb%ds =0 (A7)

>0

and from (A 3) that there exists M, > 0 such that
f lgrad ¢|2dS < M,,. (A8)
gE
Further, equation (A 2) may be written in the form

0 . _
Im Lﬁgb%ds =—g(R,e),

where g(R,€) = T () f g2 dS+Im f 622 as.
2, %r a'ﬂ

Now, since Im (k?) < 0, g(R, €) is monotone non-increasing as ¢ increases, hence by
(2.3) and Schwartz’s inequality

1
2
)

9B, 0°)] < lg(B, )] < 2Mv<ne>{ f jgrad ¢|2ds}

. lg(&,0%)?
ids =,
i.e. J@Jgr&d $>ds A Pre

which contradicts (A 8) unless g(R,0%) = 0. On taking the limit as R+ 00 and using
the radiation condition (2.4) we conclude that

Im (Ez)f ||? dS + Im (—ik) lim J [p12ds = 0. (A9)
D, R0 Jép,
It follows immediately that if Im (k%) > O then

=0, PeD, (A 10)
Phil. Trans. R. Soc. Lond. A (1992)
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which is the required result. In the special case Im (k) = 0, (A 9) reduces to

lim | |¢?ds =0,

R>w J%p

and (A 10) follows from a result due to Rellich (1943). O

Appendix B. Proof of Theorem 2

It is clear that (3.1) satisfies (2.1) for it is permissible to differentiate under the
integral as many times as we like for P¢ L. Further, as P — o0, we may replace the
Bessel function by its asymptotic expansion to obtain

B(P) = (2/mhr)ie! =D F(6) +o(r ), (B1)
uniformly in 0 < 6 < 2n, where
) . 0 .
F(O) = %IJ M(Sq)ﬁexp [ —ikr,cos (0—0,)]ds, (B 2)
L q

and so (3.1) also satisfies (2.4). Next, we note that the power series (Watson 1944) for
the Bessel function gives

1 1
QAP,Q) = %mm+ G,(P,Q), (B 3)

where R(P,Q) = |rP)—rQ),
G,(P,Q) = Li—(1/27) (y +In (2k)) + (k2R2/8m) In (kR) + O(k*R?), (B 4)

and vy is Euler’s constant. It follows that if we set

E(s) = Re(u(s) and p(s) = Im (u(s)),

then (3.1) may be written as

1 £(t) . y(t)
Q_‘}E L(t-—z)dt+lRe§1—t; L(t——z)

$(P) = Re di+ ¢, (P),

0
where . (P) =f /L(sq)a—n—Gl(P,q)dsq,
L

q

z=reland t =7, ¢%. Now it has been shown by Muskhelishvili (1953, ch. 2), that
if p(s) has properties 2(L), then the Cauchy integral

_ 1 p@)
P& =55 ) =W

is continuous at £~, £* and from both sides of L and has continuous boundary values
D*(t,), D(¢,) satisfying
B+ (ty)— B (1y) = pllo). LyEL.

We conclude that since ¢,(P) is clearly continuous in the whole plane, then ¢(P)
satisfies (2.3) and

[p(p)] =" (p)—d(p) = u(p), (B5)

Phil. Trans. R. Soc. Lond. A (1992)
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w(p.q)
p
4\6p.9) Bp)

Figure 12. The angles o, 5, 0.

where $*(p) = $(p), pel*.

Further, we may calculate the normal derivatives of (3.1) using the Cauchy-Riemann
relations

00 0 1 00 0 1

—(p,9) =—IM——, —(p,9)=——INn——, B6

0s, (2,9) on, R(p,q) 0, (7.9) 0s, R(p,q) (B6)
and an integration by parts, where @(p, q) is the angle between r(¢q) —r(p) and Oz (see
figure 12); we find that

S _1af 1 9%,
an_2n68p L/L(Sq)lnR(p,q)dsq+an . (B17)

D

The first term in this expression is the tangential derivative of a single layer
harmonic potential and again Muskhelishvili (1953, ch. 2, §13) has shown that such
an integral is continuous except at the ends £~ and E*. Also, it follows from (B 4)
that

T (p.q) = 0 R(p.a)
on,, on,, po= b9
as p—q and thus d¢,/dn, is continuous on the whole of L. dJ

Appendix C. Proof of Theorem 3

It is easily shown using (B 4) that 0@, /OR is continuous in the whole plane and thus
we need only consider

A _ __1__ p(t’ Q)
GoP,g) = Rog o | =D € 1)

An integration by parts gives

oG, . [e0r0 [ 1 g }
'a'E"Re{ 2 L(t—z)astds" (©2)

Phil. Trans. R. Soc. Lond. A (1992)
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524 P. A. Leuns and G. R. Wickham
P 4e —
But ’ fLa—Stdst =0 (C3)
G, ., [eloF0 1 1 0o
and thus R R e
_ X(z.9)
= Re {2niR<P, q>} ’ ©4)
£t,q)
where z,q) = | >22=d¢ Ch
Xea) = | B (©5)
and E,0) = (1—0) 0, ©6)
Sy

It follows from (4.2) that

2 (t—q) V(s3—s2) |
&t,q) =—= 34l Cc7
D = R s Vi) 7
Now it is easily verified that the latter function is a Holder continuous function of
s, in the open interval (—s,,s,) and hence from Muskhelishvili (1953, ch. 2, §22) it
follows that if ¢ is an interior point of L, then there exists positive constants C, ¢ and
4 such that

lx(z,9)—x(q*,q)l < Clz—ql, (C8)

where e (e, 1). But it follows from the Plemelj formulae and equations (C 6) and
(C7) that

) 0 .
X%, q9) = inlé(q,qu a—fdsz = F2i,
L t

which proves (4.5).
To prove the second part of the theorem, consider

A 1 0
G,(P,q) = %f p(t,q) =— I R(P,t)ds,,
L

on,

using the Cauchy relations (B 6) we obtain

5 Y Q%___l_ cosa(t, p) op
KO(_/p’ 9) - I}Lr:;lt anp - 27'[ fL R(t,p) ast dst: (C 9)
where a(t,p) = B(p)—O(t, p). (C10)
Hence
o6, 1 o) 3p
on,  2m Re{ﬁ (t—p)éiids‘}
vV (s§5—52) {f ds, J{ y(t,p)ds }
=—-—2_© Re + ¢ , C11
= s s V=D L e—sg v O
1 eiﬁ(p)
where 7t p) =— + (C12)

(s:—8p) (t—p)
Phil. Trans. R. Soc. Lond. A (1992)
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The diffraction of SH waves 525

The first term in (C 11) may be shown to vanish identically using contour integration.
The function (¢, p) is evidently continuous on L and differentiable except at ¢t = p.
It follows that the second term in (C 11) has at worst a logarithmic singularity at
t = p. Finally it is routine to show that

M, (¢, p) = O(In |t—pl), (C 13)

as { — p which ensures the continuity of the integral in (4.7). This completes the proof
of Theorem 3 save to note that, in general, K (p, ¢) may be expressed in the form (4.9)
using the identity

0s, R(t, p) ’

and (B 6). O

(C 14)

Appendix D. Proof of Theorem 4

We begin by first proving that every solution of (5.2) (and hence of (5.4)) has
properties 2(L). If 3¢,/0on, is Holder continuous, then the right-hand side of (5.2) is
also Holder continuous. It follows that every solution of (5.2) has the same property.
Interchanging the order of integration then gives

ulg) = Lp(t, q) H(s,) ds,

1 0 sin a(t, p) 00,
where  His) =g JLﬂ(p) R St | MEpap)ds, s D)
Now, given that u(p) is Holder continuous it is easily shown using (C 13) and (C 14)
that H(t) is also Holder continuous and hence

du(s,) _ 2 \/(33"3:2)}1

ds,  mvs—) ] 53,

exists and is Holder continuous on the interior of L (cf. Muskhelishvili 1953, ch. 2,
§21).

Suppose now that we take any particular solution, x* say, of (5.2); then this may
be substituted into (3.1) to generate a potential ¢*(P) which satisfies (2.1), (2.2) and
(2.4). Further, if £* = Re (#*) and #* = Im (u*), then

(s,) ds, (D2)

Cre L [EO o L[ 7t 1 G
¢*(P) = Re i L(t—z)dH_lRe o JL (t_z)dt+L,u*(t) o, ds, (D 3)

and it may be shown using the methods of Muskhelishvili (1953, ch. 2, §16) that
grad, ¢* = 0|2 F ol ¥), 2->%q,. (D 4)
Similarly grad, G(P,q) = O(zF q,| %), 2—>+q,, (D 5)

so that on applying Green’s theorem to G and ¢* as in (5.1) we obtain

. do*
M*(q)—Lﬂ*@)K(p, q)ds, = —LPO‘, q)a%dst, qel, (D 6)
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526 P.A. Lewis and G. R. Wickham
since, by (B 5), [¢*(9)] = 1*(9), (D7)

and f%;e—>0 as € >0 by virtue of (2.3), (4.5) and (4.7). But p* satisfies (5.2) and hence
(D 6) gives

9" | 0By
Lp(t Q)(ant 3 >dst—0 gel. (D 8)
Differentiating this equation with respect to s, gives
1 V(55— 1) (a¢* ©¢O)
——+=—|ds, =0, qelL, D9
TV (s5=s2) ) (s,—s,) \om, Om,) " f (9)

which implies that the analytic function @(z) defined by

V(s5—57) (04 | 0,
D(z) = V=) =2 \om + on, d¢ (D 10)
dg* 09
ty = 1 4 770
has boundary values D(g*) on, + an, (D 11)

and is bounded at the ends =+s,. It follows that @(z) is an entire function and by
Liouville’s theorem it is identically zero; hence

99* | 0y _
on +an =0,

q

(D 12)

q

i.e. ¢* satisfies the boundary condition (2.2). Now from Theorem 1 there is at most
one such potential; we conclude that if there is a solution u* of (5.2) then it is also
unique, but from Fredholm theory (Smithies 1962) uniqueness implies existence.
This completes the proof of Theorem 4. O

Appendix E. Evaluation of certain integrals

In this appendix we evaluate the integrals that arose in §8. Firstly we consider

1
fl(p,q)=f o(t,q) In |t —pl dt, (E 1)
-1
where ot,q) =Inlt—q|—In|1—tg+ /(1 —¢%) v (1 —1?)|. (E2)
An integration by parts gives
' Inft—p| }
I(p,q) = 1—2{1t1+ln2— — I———-—————dt, E3
{(2:9) = vV (1—¢*)y7( )—(g—p) == (E 3)
' Injt—p|
where we have used dt =—min2. (E 4)
-1 \/( _tz

Next we consider

_ In (z—p)
Iz(p,Q)—fc(z_q)\/(l*zz)dz,

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A
A

r

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

4 Y
\
) \

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The diffraction of SH waves 527

A=

Figure 13. Contour of integration.

where (' is the contour as shown in figure 13 and we have set p = 1. By the residue

Theorem we see that
f ...dz=—J ... dz, (E 5)
vaU Vs Y2 U1

and that the right-hand side of (E5) is in fact twice the required integral.
Introducing z = 1+iy and noting that due to the branch cut

In(z—1) =In|y|+3nt on1y,,
In(z—1) =In|y|—2in ony,,

we find that the resulting integral may be evaluated to give

2 1
I(1,9) = ——Tli?;arctan A/(T%)

Repeating the above for p = —1, we obtain

2 1—
=1.0) = S aetan [(151),

and so we conclude that

sgn (p—9q) A/(Pﬂ)
Iy(p.q) =—2m t — ) E6
2(P:9) T et J7F, (E 6)
where + correspond to p > ¢ and p < q respectively. Therefore
lp—4l J(liq)}
L(p,q)=v(1—¢* 1+In2)—2n t ==, E7
(P2 9) =V/( Q){Tt( n2) V(l_qz)arc an 7y (B 7)

as required.
The remaining integrals are evaluated in similar fashion using the following
results:

Y(t=p)Injt—p| .. _ _
J_l——m)—dt—ﬂ:(ln2 1)p
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528 P. A. Lewis and G. R. Wickham
V 1 2
(t_p) ln]t_I" 3 2,1
— L dt=7n(E—=1n2 (1 —21n2).
and f_l VA=) df = n(E—In2) p*+in( n2)
We ﬁndthat

Iy(p,q) = J o(t,q) (t—p)In|t—p|dt

-1
= T(p—q)|p—q|arctan A/(1:Z>+\/(1—q2)i1t{q+2qln2—4pln2}, (E 8)
1

and 14(10,q)=f o(t,q)(t—p)*Injt—p|dt

-1

= —2n(p—q)?|p—q| arctan I\/(@)

1+
+ryv/ (1= {p*In2—pgIn2+3*In2+1in2—L—1p?+1e2 (E9)
as required.
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